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Application of Efficient Methods for Inspection Sensitivity 

 

Jose Garza
1
 and Harry Millwater Jr., Ph.D

2
 

University of Texas at San Antonio, San Antonio, TX, 78249 

Nondestructive evaluation (NDE) inspections play a vital role in the reliability of 

structural components. NDE inspecitons are simulated using a Probability-of-Detection 

curve (POD) that is obtained experimentally. In this paper a methodology using the 

expectation operator was developed to obtain the sensitivity of the Probability-of-Failure 

(POF) with respect to parameters of the POD via Monte Carlo Sampling. The methodology 

scales to any number of inspections and can be integrated with existing Monte Carlo 

sampling methods. Sensitivities of the probability-of-failure with respect to the parameters 

of a POD curve were calculated for several numerical examples then compared against 

analytical and numerical finite difference solutions. 

Nomenclature 

f ( ,x) crack size probability distribution before inspection 

f (n )(x) crack size probability distribution after nth inspection 

POD( ,x)  Probability of detection curve 

CPOD( ,x) complementary POD, equals 1 minus POD 

X crack size random variable 

 parameter of POD curve 

c( )   scaling parameter such that the integral of f ( ,x)  equals one 

PDet  probability of detecting a crack 

PNoDet probability of not detecting a crack 

P(n )
f  probability of failure after nth inspection  

dP(n )
f /d            probability of failure sensitivity with respect to  after nth inspection 

E
f ( n ) [ ] expected value operator with respect to f (n )(x) 

                                                 
1 Master’s Student, Mechanical Engineering Department         
2 Associate Professor, Mechanical Engineering Department, EB 3.04.50, AIAA Member 
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N (n ) number of  samples generated from f (n )(x).  N(n ) N(n )
Det N(n )

NoDet  

N(n )
Det  number of samples detected by the nth inspection process and removed 

N (n )
NoDet   number of samples not detected by the nth inspection process 

I. Introduction  

HE POD curve has been seen as the “formal measure of quantifying NDT reliability”.
2
 The 

procedures used to create a POD take on the following sequence of events: create flaw 

specimens, inspect specimens with an NDT method, obtain results, then plot the POD curve as a 

function of flaw size.
2
 Probabilistic sensitivity analysis proves to be an essential part of 

engineering design. Kulkarni has presented a method that optimizes the cost-effectiveness of 

multiple inspections based on each inspection’s POD curve. His damage tolerance approach for 

when inspections should occur is based on three factors: macro crack initiation, macro crack 

growth, and component inspection.
6
 Research into on board sensors that can detect cracks 

continues. For instance, Shook et. al discussed the effect of recurring automated inspections on 

probability-of-failure estimates using sensor performance POD curves.
5
 The objective of this 

paper is to present an MCS method of obtaining sensitivities based on POD parameters. 

Sensitivities are critical when evaluating the fatigue life of a particular component and allow the 

assessment of the crucial parameters, which affect the POF.  By knowing which parameters of a 

POD most affect the POF, the design and inspection protocol can be optimally modified.   

The methodology developed here is to explicitly differentiate the equations to determine the 

probability-of-failure with respect to the parameters of the POD curves then integrate these 

equations using the same Monte Carlo sampling method as used to determine the POF. As a 

result, accurate derivatives can be obtained without any additional calculations since the same 

samples used to compute the POF are used to compute the sensitivities. 

II. Methodology 

Let f (x)  represent the crack size PDF before inspection. Note the initial samples will be 

available from f (x) . However, during the inspection process, the detected samples are filtered 

out. The samples after each inspection, N n, simulate the samples that would be generated from 

the PDF f (n )(x), where n denotes the current inspection. Thus, it is beneficial to write the 

equations in terms of f (n )(x) and not f (x) , since the equations are developed using the 

T 
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undetected samples. For example, expected values are written as E
f ( n) [ ]

1

N (n )
( )i

i 1

N ( n)

 and not 

E f [ ]
1

N
( )i

i 1

N

. As shown below, f (n )(x) is a function of ; therefore, more formally, we write 

f (n )( ,x) . 

 

A. Formulation  

The crack size PDF before inspection is f (n 1)(x) . The crack size PDF after an inspection 

is f (n )( ,x) c( ) CPOD( ,x) f (n 1)(x) , where CPOD( ,x) 1 POD( ,x), POD( ,x)  is the 

probability-of-detection of the nth inspection,  represents the parameters of the POD( ,x) , 

c( )  denotes a scaling parameter such that the integral over the entire domain of 

f (n )( ,x)  equals one, e.g., c(n )( ) 1/ CPOD( ,x) f (n 1)(x)dx .  Note, c( )  depends on  but 

not X. 

The probability of detecting a crack from the nth inspection is 

P(n )
Det POD( ,x) f (n 1)(x)dx

N (n )
Det

N (n )
  

where N(n )
Det  denotes the number of samples that were detected and N (n ) denotes the total 

number of samples used for inspection n, and the probability of missing a crack is  

P(n )
NoDet (1 POD( ,x)) f (n 1)(x)dx

N (n )
NoDet

N (n )
 

where N (n )
NoDet  denotes the number of samples that were not detected. 

The probability-of-failure after inspection can be determined as 

  Pf

(n )( ) I(x) f (n )( ,x)dx E
f ( n) [I(x)]

1

N (n )
I(x i)

i 1

N ( n)

                                (1) 

where I(x) denotes the indicator function which is one in the failure domain and zero otherwise, 

and E
f ( n ) [ ] represents the expected value operator with respect to f (n )(x). 

The sensitivity of the probability-of-failure with respect to a parameter of the POD curve , 

can be written 
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Pf

(n )

I(x)c( ) CPOD( ,x) f (n 1)(x)dx

I(x)c( ) CPOD( ,x) f (n 1)(x)
c 1

c

CPOD( ,x) 1

CPOD( ,x)
dx

I(x) f (n )( ,x)
c 1

c

CPOD( ,x) 1

CPOD( ,x)
dx

    (2) 

Using the substitution ( , x)
POD( ,x) 1

CPOD( , x)
 for brevity, the sensitivity can be 

written 

Pf

(n )

I(x)
c 1

c
( ,x) f (n )( ,x)dx               (3) 

 The term 
c 1

c
 can be determined as follows. Define L as  

L CPOD( ,x) f (n 1)dx          

then 

c L 1

CPOD( ,x) f (n 1)(x)dx

1

CPOD( ,x)
f (n 1)(x)dx CPOD( , x) f (n 1)(x)dx

2

c 2 POD( ,x)
f (n 1)(x)dx

         (4) 

Therefore, 

c 1

c
c

POD( ,x)
f (n 1)(x)dx

( ,x) c CPOD( ,x) f (n 1)(x)dx

( ,x) f (n )( ,x)dx

E
f ( n) [ ( , x)]

               (5) 

Note that 
c 1

c
 is a function of  but not X, therefore, this term can be extricated from the 

integral with respect to X and Eq. (3) becomes 
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Pf

(n )
c 1

c
I(x) f (n )( ,x)dx I(x) ( ,x) f (n )( ,x)dx          (6) 

Substituting Pf

n I(x) f n (x)dx  and the corresponding term for 
c 1

c
 from Eq. (5) yields 

Pf

n

Pf ( ,x) f (n )( ,x)dx I(x) ( ,x) f (n )( , x)dx

Pf E
f ( n) [ ( ,x)] E

f ( n) [I(x) ( , x)]

        (7) 

B. Numerical implementation 

The probability-of-failure and its sensitivity with respect to  are determined by several 

integrals, see Eqs. (1,7). The integrals can be estimated by approximating the expected value 

operator using sampling methods, e.g., Monte Carlo, Latin hypercube, importance sampling, etc. 

Note, that the expectations are with respect to the after inspection pdf. 

 The necessary integrals can be approximated using sampling as 

Pf

1

N (n )
I(x i)

i 1

N ( n)

                      (8) 

c 1

c
E f [ ( ,x i)]

1

N (n )
( ,x i)

i 1

N ( n)

                (9) 

E
f ( n) [I(x) ( ,x)]

1

N (n )
I(x i) ( ,x i)

i 1

N ( n)

               (10) 

Calculation procedure 

Accumulate the following sums 

A I(x i)
i 1

N ( n)

                        (11) 
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B ( ,x i)
i 1

N ( n)

                       (12) 

C I(x i) ( ,x i)
i 1

N ( n)

                      (13) 

Then, 

Pf

(n ) A /N (n )                        (14) 

Pf

n

Pf

(n )B /N (n ) C /N (n )                   (15) 

Numerical Examples 

A simple example problem is solved for which an exact analytical solution can be 

determined. The problem is solved with a linear POD curve and a lognormal POD curve. The 

problem consists of two inspections with only one random variable, the crack size and without 

any crack growth.  

 

Linear POD Numerical Example 

The probability-of-failure and its sensitivities with respect to the parameter of a linear POD 

curve, 1  and 2, were computed for two inspections using Monte Carlo sampling. An initial 

sample size of three million samples was used for the first inspection. Detected samples were 

then removed (no repair) and the samples not detected were then used in the second inspection. 

To verify the equations, the Monte Carlo sampling results were compared to analytical and finite 

difference results. The results for the first inspection are shown in Table 1 and the second 

inspection can be seen in Table 2. In the linear case, the sensitivities for both inspections show 

that increasing the slope of the POD curve will result in a decrease in the POF. 

1. First Inspection  

 The PDF before the first inspection was defined by 
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f (x)

208.3x 0 x 0.06

20 125x 0.06 x 0.16

0 x 0.16

  

and can be seen in Figure 1. The POD curve used for the first inspection was chosen as 

POD1(x)

0 x 0

8x 0 x 1/8

1 x 1/8

  

and can be seen in Figure 2, i.e. 1 8. 

The posterior PDF can be written 

f (1)(x)

0 x 0

2.3785 (1 8x) (208.3x) 0 x 0.06

2.3785 (1 8x) (20 125x) 0.06 x 1/8

0 x 1/8

  

where 2.3785 is the scaling parameter, c, for the first inspection. The failure criterion was X ≥ 

0.1. The probability-of-failure P(1)
f after the first inspection can then be calculated by 

Pf

(n )( ) I(x) f (n )( ,x)dx
0.1

1

N (n )
I(x i)

i 1

N ( n)

 

2. Second Inspection 

 A linear POD with a slope of 1 9 was used for the second inspection process.  

POD2(x)

0 x 0

9x 0 x 1/9

1 x 1/9

  

The updated PDF for the second inspection given the scaling parameter is now  

f (2)(x)

0 x 0

4.6071 (1 8x)(1 9x)(208.3x) 0 x 0.06

4.6071 (1 8x)(1 9x)(20 125x) 0.06 x 1/9

0 x 1/9

 

The scaling parameter c2  is now 4.6071. Figure 3 shows the PDF pre-inspection and post-inspection for both cases.  

 The results for the POF and its sensitivity with respect to the slope of the POD curves are 

shown in Table 1. 

B. Lognormal POD Numerical Example 
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A second example was implemented with lognormal PODs, shown in Figure 4. The POD 

curves are defined by the equation POD(x)
1

2 x
Exp[

(ln( x) )2

2 2
] where  and  are the 

mean and standard deviation of X and  and  are the mean and standard deviation of the 

log(X). The same piecewise PDF from the previous example was used as the initial crack size. 

The lognormal POD parameters for the inspections were 1 .06 , 1 .02 and 2 .03, 

2 .02.  Monte Carlo sampling and analytical results for both inspections are shown in Table 3 

and 4. A history of the PDF after each inspection can be seen in Figure 5.  

 

C. Fatigue Example 

An example problem considering fatigue crack growth was computed using the Paris Law 

(Stage II) crack growth model of the form da /dN C K
n
. Two linear POD, 1= 2=1636.72, 

inspections were performed for this example. The initial crack size in inches was modeled as a 

random variable with a lognormal distribution L[5.951E-4,3.344E-4]. Random variables C and n 

were obtained experimentally with distributions and parameters of N[log (-10.09), log (0.1570)], 

N[3.813,0.1456]. The correlation between C and n was Cn = -.9751. The fracture toughness was  

50 ksi-in
1/2

 and constant amplitude loading with an R ratio of zero and a maximum load of 70ksi 

was applied. The critical crack size was 0.130 inches. With a critical crack size known, an MCS 

code was used to calculate the average number of cycles to failure for 1E5 samples, which was 

70,000. It was arbitrarily chosen that the inspection would occur at ten and forty percent of the 

Nf , 7,000 and 28,000.  

 For one run using MCS, crack growth was generated to 7,000 cycles. If a crack was detected, 

future crack growth was aborted and a new MC sample generated and analyzed. If not detected, 

the sample was used to calculate the POF and the sensitivities of the POF with respect to the 

POD parameters. The undetected crack was allowed to continue to grow and was then 

reevaluated at the second inspection of 28,000 cycles. The inspection process was repeated for 

the inspection two.  

Tables 5 and 6 contain the results from the fatigue example. As seen in the previous case of 

the linear POD, the POF decreases as the slope increases. Updated PDFs after each inspection 

are shown in Figure 6 and 7. In both cases, the PDF shifts to the left after each inspection, which 

graphically displays a decrease in failure after each inspection. 
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III. Conclusion 

A methodology was presented such that the sensitivity of the POF with respect to the 

parameters of the POD curve of the inspection process can be obtained with high accuracy for 

negligible cost. The methodology is formulated in terms of expected value operators such that 

traditional sampling methods can be used, or, more likely, the additional equations needed to 

compute the sensitivities can be integrated with existing damage tolerance analysis codes. The 

methodology was demonstrated using three example problems and the sensitivities compared to 

analytical or numerical derivatives. The agreement in all cases was very close. 
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Appendix 

 

Table 1. First Inspection Sensitivity for Linear POD 

 

 
Monte Carlo Analytical 

Finite Difference 

(2% forward 

difference) 

Pf insp

(1)
 0.038495 0.038402 - 

Pf insp

(1)

1

 -0.033842 -0.033589 -0.032794 

Failure Criterion: P[x ≥ 0.1 in.] *Samples: 3E6 

 

Table 2. Second Inspection Sensitivity for Linear POD 

 Monte Carlo Analytical 

Finite Difference 

(2% forward 

difference) 

Pf insp

(2)
 

0.003032 0.003086 - 

Pf insp

(2)

2

 
-0.005597 -0.005422 -0.005113 

Failure Criterion: P[x ≥ 0.1 in.] *Samples: 1,260,826 
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Table 3. First Inspection Sensitivities for Lognormal POD 1 .06  , 1 .02  

 
Monte Carlo Analytical MC/Analytical 

 

Pf

(1)
 

0.009358 0.009265 
1.010 

Pf

(1)

1

 0.05444 0.05358 1.016 

Pf

(1)

1

 0.1384 0.1350 1.025 

Pf

(1)

1

 0.2875 0.2893 0.9938 

Pf

(1)

1

 1.860 1.811 1.027 

     Failure Criterion: P[x ≥ 0.1 in.] *Samples: 1E6 

 

 

    Table 4. Second Inspection Sensitivities for Lognormal POD 2 .03 , 2 .02 

 
Monte Carlo Analytical MC/Analytical 

 

Pf

(2)
 

0.0002672 0.0002628 
1.017 

Pf

(2)

1

 0.0008293 0.0008080 1.026 

Pf

(2)

1

 0.002732 0.002650 1.031 

Pf

(2)

1

 -0.01007 -0.009603 1.049 

Pf

(2)

1

 0.05656 0.05480 1.032 

     Failure Criterion: P[x ≥ 0.1 in.] *Samples: 375,517 
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Table 5. First Inspection Sensitivities for Fatigue Example 

 Monte Carlo 

Finite Difference 

(.2% forward 

difference) 

Pf insp

(1)
 3.109E-5 - 

Pf insp

(1)

1

 -3.141E-6 -3.924E-6 

Failure Criterion: P[x ≥ 0.000606 in.] *Samples: 1E8 

Table 6. Second Inspection Sensitivities for Fatigue Example 

 Monte Carlo 

Finite Difference 

(.2% forward 

difference) 

Pf insp

(2)
 .4595 - 

Pf insp

(2)

2

 -0.03283 -0.03093 

Failure Criterion: P[x ≥ 0.000606 in.] *Samples: 4,439,905 
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Figure 1. Crack Size PDF Prior to Inspection
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Figure 2. Linear Probability-of-Detection Curves, Slope1=8, Slope2=9 
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Figure 3. Updated PDFs After Linear POD Inspections 
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Figure 4. Lognormal POD Curves, 1 .06 , 1 .02 , 2 .03, 2 .02 
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Figure 5. Updated PDFs After Lognormal Inspections 
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Figure 6. Updated PDFs at First Inspection 
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Figure 7. Updated PDFs at Second Inspection 
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